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Executive Summary 

The Bermuda High is a key driver of large-scale circulation patterns in Southeastern Texas 

in summer (Davis et al., 1997). There are two mechanistic linkages between the Bermuda High 

(BH) and surface ozone in the Houston-Galveston-Brazoria (HGB) region: first, the western 

extension of the BH defines the strength of the southerly low-level jet (LLJ) that brings marine 

air with lower ozone background from the Gulf of Mexico (Higgins et al. 1997); second, the high 

pressure system allows for clear skies and high temperature conditions that are favorable for 

local production of ozone (O3). This project investigates the complex effects of the BH and the 

related meteorological conditions on surface O3 variations in the HGB region by analyzing the 

more than decade-long observational record of maximum daily 8 h average (MDA8) surface 

ozone and meteorology from June to September. The indicators of the BH location and strength 

developed/refined in this project are the longitude index of the BH western edge (BH-Lon), and 

two BH intensity related indices (BHI1 and BHI2). The BH indicators are proved to have 

significant utility in explaining the year-to-year variability in monthly mean HGB MDA8 ozone for 

June, July, August, and September during 1998-2013. Other indicators of large-scale 

meteorological conditions, including Palmer Drought Severity Index (PDSI), Arctic oscillation 

(AO), and HGB mean temperatures, are found to be of lesser utility than the BH indicators, but 

still show significant correlations with HGB ozone variability in some months. Through stepwise 

regression based on the Akaike Information Criterion (AIC), these meteorological predictors are 

employed to develop the multiple linear regression (MLR) model which reproduces more than 

50% of interannual variability of the monthly mean MDA8 ozone over the HGB from June to 

September. 

The observation-derived statistical relationships between the HGB ozone and BH are then 

used to develop an empirical scheme to correct for the known high bias of the GEOS-Chem 

chemical transport model when simulating summertime ozone along the Gulf Coast (Li et al., 



 
3 

 
 

2002; Fiore et al., 2002; Reidmiller et al., 2009; Zhang et al., 2011; McDonald-Buller, 2011). A set 

of multiple-year simulations of HGB ozone is conducted using the GEOS-Chem model. A 

moderate to strong correlation is identified between the BH-Lon and the model bias for June 

and July, which supports the hypothesis that the model bias is caused in part by the insufficient 

representation of the dynamic linkage between BH and ozone inflow to HGB. The following 

provides a summary of major findings: 

1. The MLR model we developed captures 58% - 72% of interannual variance during 

1998-2013 of the monthly mean MDA8 ozone over the HGB from June to September, 

indicating the significant role of large-scale meteorology on ozone variability for this region. 

The Bermuda High variability is the most important meteorological driver of ozone 

variability for each month. 

2. The cross-validation (CV) and hindcast analyses suggest that the MLR models have 

good skills in predicting interannual (1995-2013) variations of the monthly-mean MDA8 

ozone over the HGB from June to September, with CV R2 higher than 0.45 for each month.  

3. The relationships between the BH-Lon and HGB ozone are valuable observational 

constraints that can be used to correct the high bias in simulated ozone. After the 

correction, the mean model bias for June and July, months with the largest model bias, 

shows a 70-75% decrease and the correlation coefficient between the observed and 

simulated ozone also improves.  

 

 

 

  



 
4 

 
 

Table of Contents 
1. Introduction ............................................................................................................ 5 
2. Methods .................................................................................................................. 8 

2.1 Observational Ozone Data and Meteorological Data .................................... 8 
2.2 Study Area ...................................................................................................... 9 
2.3 Meteorological Indices ................................................................................ 10 
2.4 Statistical Method ........................................................................................ 13 

3. Quality Assurance/Quality Control Procedures .................................................... 14 
3.1 Data Quality Assurance and Quality Control ............................................... 14 
3.2 Audits of Data Quality .................................................................................. 15 

4. Results ................................................................................................................... 16 
4.1 Statistical Model .......................................................................................... 16 
4.2 Prediction Skill of the MLR model ............................................................... 20 
4.3 GEOS-Chem Simulation and Bias Correction Scheme ................................. 23 

5. Discussion ............................................................................................................. 28 
6. Summary ............................................................................................................... 33 
7. Recommendation for Future Work ....................................................................... 34 
8. Acknowledgement ................................................................................................ 35 
9. References ............................................................................................................ 36 

 

  



 
5 

 
 

1. Introduction 

Surface ozone, as an important air pollutant, has significant impacts on both public health 

and agriculture (Wang et al., 2004; Berman et al., 2012). Surface ozone is influenced not only by 

emissions of ozone precursors but also by circulation patterns through complex dynamical, 

physical, and chemical processes (e.g. Jacob and Winner 2009). Some circulation patterns will 

result in favorable local meteorological conditions for ozone exceedances, such as high 

temperatures, low wind speeds, clear skies, and stagnation (Zhu et al., 2013; Ngan et al., 2011; 

Jacob and Winner, 2009). Previous studies have demonstrated the associations between 

large-scale circulations and surface ozone concentrations over the United States (e.g. Lin et al., 

2012; Shen et al., 2015; Lin et al., 2015). Surface ozone concentrations in the Western US are 

associated with mid-latitude cyclones which transport Asian pollutions eastward to the Pacific 

(Lin et al., 2012). More frequent late spring stratospheric intrusions occurring following strong 

La Niña winters can also elevate western US surface ozone (Lin et al., 2015). In the Midwest and 

Northeast U.S., polar jet frequency has been found to be a good indicator for surface ozone 

interannual variability (Shen et al., 2015).  

During the summer in the Southeastern United States, the Bermuda High is the key 

large-scale circulation pattern that influences the weather and climate. The Bermuda High (BH), 

a quasi-permanent system located over the North Atlantic Ocean in summer (Davis et al.1997) 

has significant influences on the regional climate and thus surface ozone over the eastern 

United States (Li et al., 2012; Zhu et al., 2013; Hegarty et al., 2007; Hogrefe et al., 2004; Shen et 

al., 2015). In summer, the westward extension of the Bermuda High places the eastern United 

States under the control of high pressure, and produces high temperatures and clear skies 

therein, which are favorable for local production of ozone. The Bermuda High also defines the 

strength of the low-level jet (LLJ) over the southern Great Plains. The southerly flows at the 

west edge of the Bermuda High bring clean marine air from the Gulf of Mexico to the southern 
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Great Plains (Higgins et al. 1997). This, on the other hand, is favorable for the reduction of 

background ozone. Modeling results from Hogrefe et al. (2004) show that high ozone 

concentrations easily occur over large parts of the Northeast under the Bermuda High pressure 

pattern. Using observational data, Zhu and Liang (2013) found positive correlations between 

summer maximum daily 8 h average (MDA8) surface ozone and the intensity of the BH on the 

interannual time scale over the Northeast, and negative correlations over the South-Central US. 

Analyzing the observational data from 1980 to 2012, Shen et al. (2015) suggested that the 

location of the Bermuda High western edge is related to summer MDA8 ozone in the Southeast. 

He also stated that in the summers, when the average position of Bermuda High western edge 

is located west of 85.4°W, any additional westward shift of the western edge will lead to an 

increase of Southeast U.S. ozone by ~1 ppbv deg-1 in longitude.  

The Houston-Galveston-Brazoria (HGB) area is usually near the western edge of the BH in 

summer (June, July and August). It was classified in 2012 as a “marginal” nonattainment zone 

for O3 by the U.S. Environmental Protection Agency (EPA) under the 2008 standard (TCEQ, 

2012). Though background ozone of the HGB area has decreased in the past decade 

(Nielsen-Gammon et al., 2005; Berlin et al. 2014), the HGB region still witnessed many high 

surface ozone episodes. Some of the high ozone episodes have been proved to be influenced by 

large-scale circulations and associated meteorological factors (Ngan et al., 2011; Rappenglück 

et al., 2008; Pakalapati et al., 2009; Haman et al., 2014). Rappenglück et al. (2008) and Ngan et 

al. (2011) both pointed out that ozone exceedance days over the HGB always occur under the 

dominance of synoptic northerly and easterly flows, since the presence of easterly flows can 

transport emissions from the Ship Channel into the center of the urban area, and the presence 

of either northerly or easterly winds can advect continental background ozone to the Houston 

area. Modeling results sometimes show significant differences between planetary boundary 

layer (PBL) heights on high ozone days and low ozone days (Haman et al., 2014). On high ozone 
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days, the nighttime and early morning PBL heights tend to be relatively lower (Haman et al., 

2014). 

The studies mentioned above mostly focused on the connections between weather 

patterns and high ozone concentrations on episodic cases, rather than the long-term variations. 

Zhu and Liang (2013) and Shen et al. (2015) have revealed a moderate-to-strong negative 

correlation between interannual anomalies of the BH and summer mean MDA8 ozone over the 

southern US. Summer means the months of June, July, and August (JJA) hereafter in this report. 

Until now, there has been no attempt to quantify the contribution of the BH variability on 

surface O3 concentrations over HGB. Here we aim to develop a statistical model to characterize 

the quantitative relationship between the variability of BH and monthly MDA8 ozone over the 

HGB on an interannual timescale. The statistical model derived herein will be beneficial in 

understanding the role that meteorology plays in the interannual variability of the HGB ozone. 

The second aim is to assess the skill of the statistical model in hindcasting surface ozone 

variations over the HGB.  

Furthermore, it is a known problem that the GEOS-Chem global chemical transport model 

(CTM), like many other global models, has a tendency to overestimate ozone at Gulf Coast sites 

in summer (Li et al., 2002; Fiore et al., 2002; Reidmiller et al., 2009; Zhang et al., 2011; 

McDonald-Buller, 2011). While inadequate marine boundary layer chemistry has been 

proposed as one possible explanation for this high bias in the global models, the bias can also 

be caused by insufficient representation of the dynamic linkage between BH and ozone inflow 

to the HGB from the Gulf of Mexico (Fiore et al., 2002). Thus, the third aim is to use the 

observation-derived relationships between BH and HGB ozone to design an empirical bias 

correction scheme for the GEOS-Chem global CTM to improve its simulation of the background 

O3 associated with maritime inflow to the HGB.  
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2. Methods 

2.1 Observational Ozone Data and Meteorological Data 

Surface ozone concentrations over the HGB have been routinely monitored at continuous 

ambient monitoring stations (CAMSs) maintained by the Texas Commission on Environmental 

Quality (TCEQ), the City of Houston, and Harris County. In our study, observational records of 

MDA8 ozone during the ozone season (May 1 - September 30) from 1998 to 2013 over the HGB 

region were obtained from the TCEQ website. To remove the influence of trends in 

anthropogenic emissions over the HGB on interannual variability of ozone, the MDA8 ozone 

data is detrended. Since the change of ozone precursor emissions may not be linear, we 

detrend the raw MDA8 ozone time series by subtracting the 3-year moving average. Thus, the 

time series of detrended MDA8 ozone is from 1999 to 2012. We verify that the results from the 

project do not depend on the detrending method (c.f. Section 5). As an example, Figure 1 

shows the raw (solid black line) and detrended (dashed black line) time series of monthly mean 

MDA8 ozone for September. 

The meteorological data used in this study consists of the geopotential height at 850hPa, 

and sea level pressure (SLP) from the National Centers for Environmental Prediction (NCEP) 

Reanalysis 1 with a spatial resolution of 2.5o×2.5o (Kalnay et al., 1996), and 2-meter 

temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim 

reanalysis with 0.5o×0.5o spatial resolution. We also collected Palmer Drought Severity Index 

(PDSI) time series and time series of Arctic Oscillation (AO) from the NOAA website as potential 

predictors for surface ozone. Since our focus is on synoptic-scale variability, all the 

meteorological indices except PDSI (including AO, 2-meter temperature, and the various 

Bermuda High indices described in 2.3) were detrended by subtracting a best-fit linear trend 

from the raw time series. The time series of PDSI was not detrended because PDSI is a 

http://www.tceq.state.tx.us/agency/data/%20ozone_data.html
https://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts
http://www.esrl.noaa.gov/psd/data/climateindices/list/
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normalized index by definition. As an example, Figure 1 shows the raw (solid red line) and 

detrended (dashed red line) time series of one meteorological index (the longitude index of the 

BH western edge or BH-Lon) for September. 

 

Figure 1. Time series of raw (solid) and detrended (dashed) data of the monthly-mean 

MDA8 ozone (black lines) and the BH-Lon (red lines) for September.  

2.2 Study Area  

The study area includes the region of Houston, Galveston, and Brazoria (HGB), delineated 

by longitude from -94.5°W to -96.0°W, and by latitude from 28.5°N to 30.5°N (black box in 

Figure 2). A total of 28 ozone CAMS sites are in this region. Figure 2 shows the long-term 

(1998-2013) mean MDA8 ozone from May 1 to September 30. Ozone concentrations for sites in 

Galveston and Brazoria counties are relatively lower than the sites in the Houston region, due 

(in part) to lower local emissions.   
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Figure 2. Map of the study area showing the locations of the sites and long-term 

(1998-2013) mean MDA8 ozone concentrations from May 1 to September 30. 

2.3 Meteorological Indices  

Several indices have been used in the literature to define the intensity and the location of 

the BH (Stahle and Cleaveland, 1992; Ortegren et al. 2011, Li et al. 2011; Zhu and Liang, 2013). 

The majority of the existing indices describing the intensity of the BH are defined on the basis of 

SLP differences between two locations, one near New Orleans and the other near Bermuda, 

with their exact locations varying among studies. In Zhu and Liang (2013) study, the BH intensity 

index (BHI) was defined as the regional mean SLP difference between the Gulf of Mexico 

(25.3°-29.3°N, 95°-90°W) and the southern Great Plains (35°-39°N, 105.5°-100°W). They found 

an association between their BHI and the strength of LLJ, which determines the transport of 

clean marine air from the Gulf of Mexico. Similar to their definition, we define our first BHI 

(BHI1) as the mean SLP difference between the Gulf of Mexico (25.3°-29.3°N, 92.5°-87.5°W) 

(box 1 in Figure 3) and the southern Great Plains (35°-39°N, 105.5°-100°W) (box 2 in Figure 3). 

Our second BHI (BHI2) is defined as the mean SLP difference between the Gulf of Mexico (box 1 

in Figure 3) and the northeast Texas (31°-36°N, 91°-96°W) (box 3 in Figure 3). BHI1 and BHI2 are 

intended to indicate the meridional and zonal wind speed over the HGB region, respectively. 
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According to Ngan et al (2013), the possibility of exceeding the 8-h ozone standard is higher 

when there are easterly and northerly winds over the HGB, which corresponds to a negative 

BHI1 and a positive BHI2 respectively. 

 
Figure 3. Regions used to define the BH intensity indices BHI1 and BHI2.  

We also calculate BH-Lon to measure the westward extension of the BH, as defined by Li et 

al. (2011). Similar to their definition, we locate BH-Lon as the cross point of the 1560 

geopotential meter (gpm) isoline and the 850hPa wind ridgeline. As shown in Figure 4, the 

mean seasonal variation of BH-Lon correlates well with that of surface ozone concentrations in 

the HGB from May to September. The trough of ozone in July is accompanied by the lowest 

BH-Lon of the year, which means the most westward extension of the BH occurs in July. The 

westward extension of BH (lower BH-Lon) is accompanied by stronger inflow of maritime air 

with lower ozone background into the HGB; that is why BH-Lon can explain the seasonal 

variations of ozone over the HGB. The whole HGB region is under the control of strong 

southerly winds on 850hPa from June to September (Figure 5). Since the relations between 

BH-Lon and the HGB ozone may differ month by month during the ozone season, we analyze 

the impact of the BH on the HGB ozone for individual months. In some years (e.g. 2005), the 

1560-gpm isoline does not exist over the Bermuda region in May. Because of the instability of 

the BH in May, we only calculate BH-Lon from June to September in the later analysis. The 

BH-Lon for June and July is calculated using the 1560 gpm isoline as defined by Li et al. (2011). 

Significantly negative correlations are found between the BH-Lon and detrended HGB-mean 

 
 

  1   

 2   
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MDA8 ozone for June and July during 1999-2012, with the squares of the correlation coefficient 

(R2) being 0.49 and 0.58, respectively. However, the BH-Lon calculated the same way for August 

and September does not show a significant correlation with ozone. Since the BH in August and 

September are much weaker than that in June and July, it may not be appropriate to use the 

same isoline to characterize the BH position throughout the ozone season. We tried different 

isolines with an interval of 4 gpm from 1560 to 1536 gpm in calculating the BH-Lon for August 

and September. The 1556-gpm and 1536-gpm isoline is found to be most appropriate to define 

the BH-Lon for August and September respectively, because the resulting BH-Lon shows the 

highest correlation with the detrended HGB-mean MDA8 ozone with R2 being 0.20 for both 

months.  

Besides the BH-based indices, we also calculate the HGB-mean PDSI, HGB-mean surface 

temperatures, and the Arctic Oscillation time series as candidates of potential predictors of the 

HGB-mean MDA8 ozone. Note that all the BH-related indices are developed on the basis of 

NCEP reanalysis and the HGB-mean temperatures are calculated using ERA-Interim reanalysis. 

 

  

Figure 4. Seasonal variations of the BH-Lon and HGB-mean MDA8 ozone. 
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Figure 5. Distribution of the long-term mean 850hPa geopotential height and wind field in 

June, July, August, and September. 

 

2.4 Statistical Method 

We apply a multiple linear regression (MLR) model, which has been commonly used in air 

quality and climate studies (e.g. Kutner et al., 2004; Tai et al., 2010), to construct the statistical 

relationship between the HGB-mean monthly MDA8 ozone and the predictors selected in the 

previous section. For an easy comparison, we normalize all the predictors ( kx ) as well as the 

dependent variable (y) in the later analysis. The model is of the form： 

6

0
=1

= + k k
k

y xβ β∑                                               (1) 

where y is the detrended and normalized monthly mean MDA8 O3 over the HGB region, 

Jun Jul 

gpm 

Aug Sep 
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kx  is one of the six predictors presented above (i.e., BH-Lon, BHI1, BHI2, HGB-mean 

temperature, PDSI, and AO) which is detrended and normalized except for PDSI, kβ  is the 

corresponding regression coefficient for kx , and 0β  is the intercept. We apply a stepwise 

regression to add and delete terms based on the Akaike Information Criterion (AIC) statistics to 

obtain the best model fit (Venables and Ripley, 2003). The AIC is a measure of the relative 

quality of the statistical models for a given set of data. Given a collection of possible models for 

the data, AIC estimates the quality of each model, relative to each of the other models.  

3. Quality Assurance/Quality Control Procedures   

3.1 Data Quality Assurance and Quality Control 

The CAMSs data of MDA8 ozone over the HGB region were downloaded in ASCII format 

from the TCEQ website. Even though there are some missing data, the overall data coverage is 

good at 99%. Since we focus on the HGB mean ozone, the missing data were simply discarded 

and this treatment will not affect the monthly statistics of MDA8 ozone used in the analysis.  

To assess the sensitivity of the MLR model to different metrics of MDA8 ozone used in the 

regression, we tested the regression performance using not only the monthly mean ozone 

values but also the median, background ozone, and ozone enhancement (defined as measured 

ozone minus ozone background). The background ozone data were obtained from Mark Estes 

at the TCEQ. A Matlab program was used to read the ozone data and compute the statistical 

analyses. The best regression statistics were obtained when monthly mean MDA8 ozone was 

used as the dependent variable, although other ozone metrics gave consistent regression 

results.   

 The 2.5°× 2.5° meteorological reanalysis data were collected from the NOAA website and 

the 0.5°× 0.5° meteorological reanalysis data were collected from the ECMWF website. All the 

http://en.wikipedia.org/wiki/Statistical_model
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://apps.ecmwf.int/datasets/
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reanalysis data were archived in NetCDF format. The time series of AO was obtained in ASCII 

format from the NOAA website. NCAR Command Language (NCL) program was used to read the 

reanalysis data. 

The meteorological predictors/indicators used in the analysis were calculated using 

different reanalysis datasets to examine whether the analysis is sensitive to the choice of 

source data. The BH related indices (BH-Lon, BHI1, and BH2) derived from the 

coarser-resolution NCEP reanalysis were largely consistent with those derived from the 

finer-resolution ECMWF and the North America Regional Reanalysis (NARR), supporting our 

hypothesis that the BH indicators represent the large-scale circulation patterns and thus are not 

dependent on the resolution of reanalysis data used.  

The GEOS-Chem global CTM has a standard benchmarking procedure for each major code 

release, using observations compiled from surface monitoring network, aircraft campaigns, and 

satellite retrievals around the globe. The GEOS-Chem model simulation results were thoroughly 

evaluated using not only surface ozone observations in the HGB but also the benchmark 

observations in the continental U.S. Interactive Data Language (IDL) programs were used to 

visualize and extract the corresponding model outputs for the comparisons with the 

observational data. 

3.2 Audits of Data Quality 

The quality of ozone and meteorological data has been audited by a member of the 

research team who did not compile or processed these data. At least 10% of the data have 

been reviewed and audited. The secondary data of meteorological observations and reanalysis 

has been further reviewed by comparing descriptive statistics and summary graphs generated 

by the project with those from the original data’s website or documentation.  

10% of the data used in the statistical modeling has been reviewed by a member of the 

http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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research team who did not develop the statistical model or process its input data. The 

statistical model outputs have been reviewed by colleagues from the University of Texas Health 

Science Center at Houston and Harvard University who are not involved in the project. 

A member of the research team who did not conduct the GEOS-Chem simulation or 

develop the bias correction scheme has reviewed at least 10% of the modeling results for 

quality assurance purposes. A member from the GEOS-Chem model steering committee has 

reviewed at least 10% of the GEOS-Chem modeling results. 

 

4. Results 

4.1 Statistical Model 

Using the predictors listed above, we apply a stepwise regression for the HGB-mean MDA8 

ozone for each month from June to September. The regression equations for individual months 

are described in Table 1. Since all the predictors and the HGB ozone are normalized, the 

intercept 0β equals 0 in the MLR equations. BH-Lon is the only predictor selected in the MLR 

equations for each month, indicating that the westward extension of BH is a key factor in 

influencing HGB ozone from June to September, which distinguishes BH-Lon from other 

meteorological predictors. 

Figure 6 shows the time series of observed HGB-mean MDA8 ozone (black line) and 

MLR-regressed ozone (blue line) from 1999 to 2012. The squares of the correlation coefficients 

(R2) for these four months are all higher than 0.55 (Table 2), which indicates that the selected 

predictors well capture observed interannual variability of HGB-mean MDA8 ozone. Many of 

the extremely high and low ozone events in June, July, and August are also captured by the MLR 

model. For example, HGB-mean MDA8 ozone in June 2004 is the lowest during the studied 
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years, and so is the regressed ozone for June 2004. However, in September, the regressed 

ozone shows a large inconsistency with observed ozone in the high ozone year of 2011, which 

indicates the potential deficiency of the MLR model to predict extremely high ozone events in 

September. 

 

Table 1. The MLR model for HGB-mean MDA8 ozone concentrations in June, July, 

August, and September 

Variables in the MLR model June July August September 

Intercept ( 0β ) 0 0 0 0 

BH-Lon 0.34 0.77 0.80 0.56 

BHI1 - - -0.42 - 

BHI2 -0.76 - 0.96 -0.50 

PDSI - - -1.12 - 

AO - - - 0.67 

HGB-mean temperature 0.49 - - - 
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Figure 6. Time series of observed HGB-mean MDA8 ozone (black line), MLR-regressed 

ozone (blue line), and MLR-predicted ozone (through cross-validation) (red line) during 

1999-2012. 

 

Table 2. Squares of correlation coefficients (R2) between observed ozone, regressed 

ozone, and cross-validated ozone. 

 

 June July August September 

Regressed R2 0.71 0.58 0.72 0.63 

Adjusted R2 0.62 0.55 0.59 0.52 

Cross-validated R2 0.50 0.54 0.46 0.47 

 

According to the stepwise MLR and AIC, different predictors are selected for each month. 

1998 2000 2002 2004 2006 2008 2010 2012
-2

-1

0

1

2

Year

oz
on

e

 

 

observed ozone
predicted ozone
regressed ozone

1998 2000 2002 2004 2006 2008 2010 2012
-2

-1

0

1

2

Year

oz
on

e

 

 

observed ozone
predicted ozone
regressed ozone

(a) Jun                          (b) Jul 

1998 2000 2002 2004 2006 2008 2010 2012
-3

-2

-1

0

1

2

Year

oz
on

e

 

 

observed ozone
predicted ozone
regressed ozone

1998 2000 2002 2004 2006 2008 2010 2012
-2

-1

0

1

2

Year

oz
on

e

 

 

observed ozone
predicted ozone
regressed ozone

(c) Aug                         (d) Sep 



 
19 

 
 

To test the relative importance of a single predictor for each month, we calculate the 

improvement of R2 when a predictor is added in the MLR equation. Figure 7 shows the 

improvements of R2 in the MLR when the predictors are added successively. In June and July, 

BH-Lon is the most important predictor explaining 50%-60% of the observed ozone variability, 

while BHI1 and BHI2 in combination play a more important role than BH-Lon in August and 

September. PDSI and AO are important only in August and September respectively.  

 

Figure 7. Improvements of R2 in the MLR when individual predictors are added in 

sequence. 

 

The MLR model developed here captures more than 50% of the interannual variance of 

HGB ozone from June to September, indicating the important role on ozone variability over the 

HGB. The definitions of BHI1 and BHI2 are both related to the regional mean SLP over the Gulf 

of Mexico. The BH-based indices may also have associations with the predictors that describe 

regional meteorological conditions (e.g. HGB-mean temperature and PDSI) on the interannual 

timescale. The regional meteorological predictors may be correlated with each other. Therefore, 

it is necessary to examine the multi-collinearity between the meteorological predictors in the 

MLR model for each month. To evaluate the collinearity, the variance inflation factor (VIF) is 
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calculated for each variable in each month. VIF is an index widely used in MLR analysis to 

measure how much the variance (the square of the estimate's standard deviation) of an 

estimated regression coefficient is increased as a result of multi-collinearity. Table 3 

summarizes VIF of the predictors selected for each month. VIF for HGB-mean temperature and 

BHI2 in June are relatively higher (7.4 and 6.1), but still lower than 10, which is a 

commonly-used VIF threshold to determine collinearity (Kutner et al., 2004). For other months, 

VIF of all the predictors are less than 5, indicating the problem of multi-collinearity among these 

variables is generally unimportant. 

 

Table 3. VIF of the predictors selected for each month 

VIF June July August September 

BH-Lon 2.06 1.54 3.06 1.18 

BHI1 - - 1.89 - 

BHI2 6.13 - 4.88 4.76 

PDSI - - 4.09 - 

AO - - - 1.47 

HGB mean temperature 7.42 - - - 

 

4.2 Prediction Skill of the MLR model 

The MLR model developed above shows good regression performance in explaining the 

interannual variations of HGB-mean MDA8 ozone on the monthly scale. To evaluate the utility 

of the MLR model in predicting the HGB ozone, we implement a cross-validation (CV) method. 

First, we isolate one month at a time, perform model fitting with the remaining months, and 

then apply the model to predict ozone on the isolated month. The time series of CV-predicted 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Standard_deviation
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HGB-mean MDA8 ozone are shown as solid red lines in Figure 6 (detrended and normalized 

time series) and Figure 8 (actual ozone concentrations). The R2 between observed and 

CV-predicted ozone is higher than 0.45 for each month (Table 2), indicating the MLR model is 

capable of predicting 45% or more interannual variability of monthly-mean ozone over the HGB 

during 1999-2012. However, some of the extreme ozone values are not very well predicted. 

With BH-Lon as the single predictor, the CV correlation coefficient in July is the highest among 

the four months, which indicates the utility of BH-Lon in predicting MDA8 ozone over the HGB 

peaks in the month of strongest BH influence for the region.  

To further assess the prediction skill of the MLR model, it is applied to hindcast ozone for 

1995-1998 and 2013, the periods outside the time series of data which were used in the model 

fitting. The meteorological predictors for these periods are calculated using the same method 

and reanalysis data as applied during the model development. The predictors are then applied 

in the MLR model derived above (Table 1) to hindcast the HGB-mean MDA8 ozone by month. 

Figure 9 compares the observed HGB-mean MDA8 ozone concentrations (black solid lines) with 

the hindcast values (red dashed lines) for the five-year period outside 1999-2012. Except for 

September 1995-1997, the MLR model correctly predicts the direction of change in ozone over 

the HGB for all the hindcast months during 1995-1998 and 2013. Figure 8 shows the scatter plot 

of observed MDA8 ozone vs the MLR hindcast value. 85% of the predicted ozone values are 

within ±10 ppbv of the observed values. The mean absolute error (MAE) and mean relative 

error (MRE) between the observed ozone and predicted ozone, as defined in Equation 2, are 

summarized in Table 4. The MAE and MRE are ~50% smaller for June and July when the HGB is 

strongly influenced by the BH than those for August and September with a weaker influence. 

Although only one predictor, BH-Lon, is selected in the MLR equation of July, MAE and MRE in 

July are the lowest among the four months, indicating the robustly strong association between 

BH-Lon and ozone over the HGB in July. MAE and MRE are the highest in September mainly 
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because the MLR equation fails to capture the extremely high ozone in 1995 and 1997, which 

lies above 1.2 and 2.4 times standard deviation of the 1994-2014 mean respectively. 

Nevertheless, high ozone concentrations observed during the other three months are well 

captured by the MLR model. This points to a particular deficiency of the MLR model in 

predicting high ozone concentrations in September.   

=

=

= −

−
=

∑

∑

N

simu,k obs,k
k 1

N
simu,k obs,k

k 1 obs,k

1 p pMAE N

p p1
MRE N p

         (2) 

where ksimu,p  means simulated ozone and kobs,p indicates observed ozone, and N denotes the 

sample size.   
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Figure 8. Time series of observed HGB-mean MDA8 ozone (black solid line), 

MLR-regressed ozone (red solid line), and MLR-predicted ozone (dashed line; prediction 

period 1995-1998 and 2013) for June, July, August and September. 

 

 

Figure 9. Scatter plot of observed HGB-mean MDA8 ozone (x-axis) vs MLR-predicted 

ozone during 1995-1998 and 2013 for June, July, August and September. 

 

Table 4. Mean absolute error (MAE; ppbv) and mean relative error (MER; %) of the MLR 

hindcast performance. MAE and MRE are defined in Equation 2.  

 June July August September 

MAE (ppbv) 5.10 4.46 6.57 10.34 

MRE (%) 12 11 14 19 

 

4.3 GEOS-Chem Simulation and Bias Correction Scheme 

GEOS-Chem North America-nested simulations are conducted for June and July from 2004 

to 2012 using the GEOS-5 assimilated meteorology and EPA National Emissions Inventory (NEI) 

with year-to-year changes of emissions. June and July are selected as the simulation months 
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because they are the months when the model has the largest positive bias in simulating surface 

ozone over the HGB. The model horizontal resolution is 0.5o x 0.667o. Figures 10 and 11 show 

the distribution of simulated monthly mean surface ozone over the HGB region from 2004 to 

2012, overlaid with observed ozone concentrations at the CAMSs. While the model captures 

the observed interannual variability of surface ozone over the HGB region, the main model bias 

is the overestimation of surface ozone over the Galveston and Brazoria coastal region, which 

have lower local emissions. This overestimation is manifest in both June and July and is 

consistent with previous studies (Li et al., 2002; Fiore et al., 2002; Reidmiller et al., 2009; Zhang 

et al., 2011; McDonald-Buller, 2011). The NEI inventory used in the simulation may not 

correctly reflect the timing and effects of local emissions controls over the HGB or unusual 

emissions over this region, which partly explains the model bias.  

For simplicity, mean ozone concentrations at four coastal rural sites (2 in Brazoria county: 

480391004-Manvel Croix Park and 480391016-Lake Jackson; 2 in Galveston county: 

481670014-Galveston airport and 481671034-Galveston 99th street) are adopted to present the 

observed coastal ozone. Simulated coastal ozone is calculated as the mean value over the 

model grids containing these four sites, i.e., the black box shown in Figure 10 and 11. We note 

that the effects of local emissions from the coastal region are not considered in the simplified 

approach of diagnosing coastal ozone from both model and observations. The model captures 

very well the interannual variations of coastal ozone in both June and July (Figure 12). The mean 

bias between the simulated and observed surface ozone over the coastal region is 5.17 ppbv for 

June and 9.54 ppbv for July. The ozone bias is higher in July than in June partly because the bias 

is associated with overestimating maritime ozone inflow, which peaks in July. Since both 

observed and simulated coastal ozone over the HGB region can be explained by the interannual 

variations of BH-Lon, the bias between observed and simulated ozone is expected to be 

correlated with BH-Lon. We hence used BH-Lon to predict this bias.  
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Figure 10. Observed surface ozone (filled circles) and GEOS-Chem simulated surface 

ozone over the HGB region in June. 
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Figure 11. Observed surface ozone (filled circles) and GEOS-Chem simulated surface 

ozone over the HGB region in July. 

 

 
Figure 12. Time series of observed and simulated mean ozone over the coastal sites and 
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their differences (simulated minus observed) for June (left) and July (right). 

 

The MLR equations for the predicted model bias (y) for June and July are as follows, 

    
= -0.13 5.23
= -0.34 9.59

Jun

Jul

y x
y x

+

+
                                     (3) 

where x indicates the detrended BH-Lon. The negative coefficients in front of the x term 

(BH-Lon) in June and July both indicate a higher model bias when BH-Lon locates more 

westward. It in turn testifies that the higher bias in July is due to the stronger maritime inflow 

that accompanies the westward extension of the BH from June to July. The interannual 

variations of the model bias is different between June and July, which supports our motivating 

hypothesis that different MLR equations are needed for individual months in order to capture 

the variance of the bias, rather than a fixed bias correction.  

The time series of the model bias and MLR-predicted bias using Equation (3) are shown in 

Figure 13. The predicted bias basically captures the variation of the model bias. However, the 

discrepancy is large for 2007, 2011 and 2012 when the model bias is extremely high or low.  

 

Figure 13. Time series of model bias (black line) and predicted bias (red line) for June 

and July.  

 

To correct the simulation results, we then subtract the predicted bias from simulated 

2004 2006 2008 2010 2012
0

2

4

6

8

10

Year

 b
ia

s 
(p

pb
v)

 

 

bias
predicted bias

Jun 
       
       
       

              
r= 0.47        

2004 2006 2008 2010 2012
4

6

8

10

12

14

16

Year

bi
as

 (
pp

bv
)

 

 

bias
predicted bias

r=0.60    

Jul 
 6 



 
28 

 
 

coastal ozone. The time series of corrected simulation is shown in Figure 14 (red line). 

Comparing the simulation results before correction (blue line) and after correction (red line), 

the correlation coefficient between observation and simulation increases from 0.72 to 0.88, and 

mean bias decreases from 9.54 ppbv to 2.36 ppbv in July. The correlation coefficient between 

the observed ozone and simulated ozone after correction is higher in June, and the mean bias in 

June is lower than that in July. This is probably because the stronger maritime inflow in July 

brings more clean background air, which in turn results in a model bias due to the 

overestimation of background ozone over the Gulf of Mexico. 

 

Figure 14. Time series of observation (black line), simulation results (blue line) and 

corrected simulation results (red line) for June and July. 

5. Discussion 

The MLR model developed in this project captures 58% - 72% of the interannual variance 

of the HGB-mean MDA8 ozone for the months of June, July, August, and September, indicating 

the significant role of large-scale meteorology on ozone variability over this region. To the best 

of our knowledge, the correlation coefficients reported in this project are significantly higher 

than those from previously published studies on the regression relationship between 

interannual variability of meteorological factors and observed ozone over the HGB region or for 
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the southern U.S. at large. Zhu and Liang (2013) reported a negative correlation, r, ranging 

between -0.5 and -0.7 between the BHI and summer-mean MDA8 ozone during 1993-2010. 

Shen et al. (2015) identified the polar jet, the Great Plains low level jet (GPLLJ), and the BH as 

major synoptic-scale patterns influencing surface O3 variability in the eastern US in summer. 

They reported that the combination of those meteorological indices explains 53% of the 

interannual variance of summer-mean MDA8 ozone in South Central US during 1980-2010. 

Compared with those previous studies which averaged surface ozone over a large geographical 

region and onto a seasonal mean and thus smoothed out some variability, the present project 

tackles a more challenging question of explaining the interannual variability of monthly ozone 

over a smaller region (HGB) during a shorter, more recent time period (1998-2013). Yet, our 

MLR results reveal higher regression correlation coefficients than those from the previous 

studies, and the MLR model developed here also show a good prediction skill with the CV R2 

higher than 0.45 for each of the months from June to September.   

In addition to the HGB mean MDA8 ozone, we also investigated the relationship between 

the selected meteorological predictors and other ozone metrics to assess the robustness of the 

relationships; the other metrics include median total ozone, mean and median background 

ozone, and mean and median ozone enhancement over the HGB region. The background ozone 

data were provided by TCEQ. Median total ozone over the HGB is calculated as the mean value 

of median monthly ozone of all the sites. Mean/median ozone enhancement is calculated as 

the difference between mean/median total ozone and mean/median background ozone. The 

median ozone is relatively lower than the mean, since the median value is less sensitive to 

extremely high ozone events (Figure 15). Monthly mean background ozone shows very similar 

interannual variations with monthly mean total ozone from June to September, and their 

correlations are highest in June (r=0.97). Table 5 summarizes the correlation coefficients 

between different ozone metrics and BH-Lon. Note that in calculating the correlations total 
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ozone and background ozone is detrended, while ozone enhancement is not detrended. In June 

and July, when the correlations between total ozone and BH-Lon are stronger, there are also 

significant correlations between background ozone and BH-Lon. In August and September, 

however, there are no significantly positive correlations between BH-Lon with either total 

ozone or background ozone at p < 0.01. Thus meteorological indices other than the BH-Lon 

have been developed for the MLR model for these months. Since the correlation coefficients 

between the BH-Lon and mean total ozone are higher than other metrics of ozone (Table 5), we 

used mean total ozone as the dependent variable y in the MLR.   

The stepwise MLR show that BH-Lon is an important predictor for every month. To 

quantify the influence of BH-Lon on the HGB surface ozone, we calculated that as BH-Lon 

extend westward, mean MDA8 surface ozone in the HGB decreases at a rate of 0.73, 0.44, 0.16 

and 0.23 ppbv deg-1 in June, July, August, and September, respectively.  
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Figure 15. Time series of mean and median total ozone, mean and median background 

ozone and ozone enhancement.  

 

 

Table 5. Correlation coefficients (R2) between BH-Lon and different metrics of ozone 

(Total ozone and background ozone are detrended). Red numbers indicate significant 

correlations (p<0.01). 

(a) Jun                   (b) Jul 

(c) Aug                (d) Sep 



 
32 

 
 

R2 Jun Jul Aug Sep 

total ozone (mean) 0.49 0.58 0.20 0.20 

total ozone (median) 0.35 0.55 0.15 0.21 

background ozone (mean) 0.30 0.28 0.00 0.10 

background ozone (median) 0.19 0.22 0.06 0.06 

Ozone enhancement (mean) 0.29 0.44 0.40 0.12 

Ozone enhancement (median) 0.23 -0.11 0.01 0.00 

 

In the analysis presented above, raw time series of MDA8 ozone is detrended by 

subtracting the 3-year moving average. To test if the analysis depends on the way of detrending, 

we used another approach by subtracting a best-fit linear trend line from the raw time series. 

Stepwise regression selected the same predictors for June, July and September when the HGB 

ozone is detrended in two different ways. However, when the HGB ozone is detrended in the 

second way, BHI1 is not selected as a predictor in the MLR for August. Similar correlation 

coefficients are found between the regressed ozone and the observed ozone if we use the 

second way to detrend (Table 6). However, the second detrending method gives a lower CV R2 

for August and September. 

One shortcoming of our analysis is that we examined the HGB region ozone as a whole and 

as such the spatial differences between the sites in the HGB region are not represented in the 

MLR model developed here. The meteorological predictors chosen in the MLR model are large 

scale in nature, such as the BH, drought, and AO. However, the spatially inhomogeneous 

emissions can result in large surface ozone gradients within the region. Owing to the spatial 

resolution of the meteorological predictors, we considered all sites in the HGB region as a 

whole and simply took the average of all CAMS observations as the dependent variable y in the 

MLR equation. Thus, the site-specific relations between ozone and meteorology were inevitably 
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left out.   

 

Table 6. Correlation coefficients (R2) between observed ozone, regressed ozone and 

cross-validated ozone when the ozone data are detrended by substracting a linear trend 

line. 

 June July August September 

Regressed R2 0.77 0.66 0.56 0.59 

Adjusted R2 0.72 0.63 0.45 0.49 

Cross-validated R2 0.70 0.58 0.31 0.40 

 

6. Summary  

The more than decade-long observational record of ozone and meteorology (1998 - 2013) 

during the months from June to September are analyzed to characterize the complex effects of 

the BH on surface MDA8 ozone variations in HGB. Statistical relationships are developed and 

tested through multiple linear regression (MLR). The indicators of the BH location and strength 

developed/refined in this project are the longitude index of the BH western edge (BH-Lon), and 

two BH intensity related indices (BHI1 and BHI2). We find that the BH-Lon alone explains 50-60% 

(r = 0.7~ 0.8) of the year-to-year variability in June and July monthly mean ozone over HGB 

during 1998-2013. Such a high correlation is explained by the mechanism that the western 

extension of the BH determines the strength of the southerly low-level jet (LLJ) that brings 

marine air with lower ozone background from the Gulf of Mexico to the HGB. In August and 

September when the BH weakens, the correlation between BH-Lon and ozone decreases to a 

less significant value of ~0.2 and stepwise regression identifies the variability in BH strength 

(BHI1 and BHI2), PDSI, and AO as additional predictors to explain the interannual ozone 
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variability over the HGB for these months. The MLR model developed in this project is able to 

capture 58% - 72% of the interannual variance of the HGB-mean MDA8 ozone from June to 

September, indicating the significant role of large-scale meteorology on ozone variability for this 

region. Among all the predictors, the BH-Lon is the most important for each month. The MLR 

model developed here also show a good prediction skill with the CV R2 higher than 0.45. To the 

best of our knowledge, the correlation coefficients reported in this project are significantly 

higher than those from previously published studies in terms of the regression relationship 

between interannual variations of meteorological factors and ozone over the HGB region or for 

the southern U.S. at large. 

 The statistical relationship is then applied to develop an empirical bias correction scheme 

to mitigate the problem of the GEOS-Chem global model in overestimating surface ozone 

concentrations along the Gulf coastal region in the summer. A set of multiple-year GEOS-Chem 

simulations is conducted. A moderate to strong correlation is identified between the BH-Lon 

and GEOS-Chem model bias for Jun and July, which supports the hypothesis that the model bias 

is caused in part by the insufficient representation of the dynamic linkage between BH and 

maritime ozone inflow to HGB. After the correction, the mean model bias in June and July 

shows a 70-75% decrease and the correlation coefficient between the observed and simulated 

ozone also improves.  

7. Recommendation for Future Work 

More in-depth analysis is needed in the future to further advance the mechanistic and 

quantitative understanding of the factors that drive the ozone variability over the HGB. To build 

upon the monthly scale analysis of the present project, the first direction of future investigation 

is toward the daily scale analysis. After all, ozone exceedance is counted on the daily basis, and 

there are large day to day changes in air pollution driving primarily by meteorology. The 
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monthly mean approach of the present project, while advancing the seasonal approach of 

many previous studies, has inevitably left out extreme events of the HGB ozone which matter 

most to public health and air quality management. We expect to find abnormal or extreme 

features of the BH and other meteorological conditions on the daily scale that may or may not 

contribute to the ozone exceedance. As the monthly mean analysis smoothes out the daily 

variability, the daily scale analysis in the future will likely reveal other important mechanisms 

for the influence of BH and other meteorological conditions on the HGB ozone. The second 

future direction is to explore finer spatial variations of ozone over the HGB. The present project 

averages all CAMS sites to present the mean ozone variability over the HGB region. Site specific 

analysis will be necessary to identify which sites are most influenced by large-scale meteorology 

and which ones are not. For the latter sites, the important question is what other factors are 

more important: local emissions, local meteorology, or regional transport. It will be helpful for 

air quality managers to have such knowledge to design attainment strategies. Finally, all the 

observation-derived understanding will provide valuable constraints for air quality models to 

identify their strength and deficiency in simulating the drivers of ozone variability over the HGB. 

If the models are proved capable of simulating those drivers, they can be employed with 

confidence to separately quantify the relative contribution of emission controls vs other 

“natural” factors on the surface ozone trend over the HGB in the past decade.  
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